Exploited Populations

Population Modeling University of Florida Gainesville, FL February-March 2016

Modeling Harvest Mortality

Not quite as simple as appears on first glance

Some History Fedor Illyich BARANOV, An officer of the Russian fleet, and a pioneer of the theory of exploited populations. W.E. RICKER taught himself Russian to be able to read BARANOV's works.

Exploitation in continuous time: mortality and exploitation as competing risks (Baranov, 1918)

```
"natural" dynamics of death: n(t+dt) - n(t) = -m n(t) dt with exploitation: n(t+dt) - n(t) = -(m+h) n(t) dt m, h: natural mortality and harvest instantaneous rates two sources of mortality assumed additive, with total rate z = m+h However, the number of individuals at risk for both sources of mortality varies with total mortality z as n(t) = n(0) \exp(-z t)
```

Exploitation in continuous time: mortality and exploitation as competing risks over [0, T]

```
Number of natural deaths \int n(t) \ m \ dt = m/z \ n(0)(1-e^{-zt}) Number of deaths from exploitation = h \ /z \ n(0)(1-e^{-zt}) Proportion of deaths from exploitation H = h \ /z \ (1-e^{-zt}) Overall proportion of survivors S = e^{-zt} Proportion of survivors if no exploitation S_0 = e^{-m\tau} \Rightarrow a \ complex \ relationship \ between \ S, \ H, \ and \ S_0: 1 - H/(1 - S) = \log \left( S_0 \right) / \log(S) ... S cannot be worked out as a simple function of H and S_0
```

Additive Risks: Instantaneous and Finite Rates

- $S_0=e^{-mT}=$ Probability that animal alive at time 0 survives nonhunting mortality sources until time T in the absence of any other mortality source
- $1-K=e^{-hT}=$ Probability that animal alive at time 0 survives hunting mortality sources until time $\,T$ in the absence of any other mortality source
- $S=S_0(1-K)=e^{-(m+h)T}={
 m\ Probability\ that\ animal\ alive\ at\ time\ 0\ survives\ all\ mortality\ sources\ until time\ T}$

Additive Risks: Instantaneous and Finite Rates

- $S=S_0(1-K)=e^{-(m+h)T}=$ Probability that animal alive at time 0 survives all mortality sources until time T
- S_0 and K are referred to as finite "net rates", in the sense that they are applicable when no other mortality sources are operative

Additive Risks: Instantaneous and Finite Rates

- $S = S_0(1-K) = e^{-(m+h)T}$ = Probability that animal alive at time 0 survives all mortality sources until time T
- This expression holds true when the mortality sources are separated in time, e.g., hunting for (0, T) and nonhunting for (T, T)
- The above expression also holds when there is no temporal separation of the mortality sources (both sources operate throughout (0, T))

N. A. Waterfowl Harvest Management

- 1960s-1970s: debate over whether harvest mortality really acted as an additive competing risk
- Alternative idea was that number of birds harvested had little to do with breeding population available in spring
 - If harvest mortality increased then nonhunting mortality decreased

Investigating Effects of Harvest

- Lots of poor inference procedures used to support different views, e.g.,
- Proponents of additive mortality hypothesis would frequently plot estimated harvest and annual survival rates for different locations
- Always obtained linear negative relationship, but it resulted from a negative sampling covariance $\operatorname{cov}(\hat{\bar{h}}_i,\hat{\bar{S}}_i)$

Investigating Effects of Harvest

- Proponents of compensatory mortality hypothesis often confuse net and crude rates
 - Crude mortality rate is the proportion of individuals that die of focal mortality source in the presence of other sources
 - Denote crude rate with prime, e.g., S₀'
- But crude rates depend on the magnitude of other operative rates and are hence tricky to interpret

Investigating Effects of Harvest

- Year divided into hunt season followed by nohunt season, so $S = S_0(1-K)$
- Hunting occurs first, so K = K', but

$$1 - S_0' = (1 - K)(1 - S_0)$$

- Example:
 - $-S_0 = 0.8, K = 0.05, 1-S'_0 = 0.19$
 - $-S_0 = 0.8, K = 0.15, 1-S'_0 = 0.17$
- Inverse relationship between K and 1-S'₀ might appear to support compensatory hypothesis, but the example shows additive mortality

Investigating Effects of Harvest: N.A. Mallards, 1987-2015

- Effects of hunting question important to management
- Boomer et al. (in review) recently undertook a thorough analysis of mallard survival and harvest rates

Harvest and Survival Estimation for N.A. Mallards

- Band reporting probabilities can vary over time and space:
 - Band inscription
 - Reporting methods
 - Recovery areas
 - Hunter behavior
- What is the relationship between harvest and survival over a time period with differing harvest regulations?

18

Limited Range of Harvest Rates Since 1995

- · Used data from 1987 for analysis
- Included more variation in harvest rates, e.g.,

Adult males: 0.05 < h < 0.13Young males: 0.10 < h < 0.25

Harvest Management for N.A. Mallards

- So we now have fairly strong evidence of substantial additivity of hunting mortality
- But this analysis is new, and what about reproductive effects?
- How have we been managing mallards in the face of this uncertainty?

Adaptive Management Mid-Continent Mallards

- Provided a natural way to manage in the face of uncertainty
- · Permitted us to learn
 - Increased "weight" on additive model is consistent with recent survival analyses
- Permitted us to use what has been learned as we proceeded

Compensatory Mechanisms

 Original compensatory mortality hypothesis is phenomenological:

$$S = S_0(1-bK); b \to 0 \mid K < C$$

- When it does seem to fit data, what sorts of mechanisms might be responsible?
 - Density-dependence
 - Heterogeneity

How Might We Model Density-Dependent Survival?

· Johnson et al. (1993) proposed

$$\begin{split} S_{t} &= S_{0,t} (1 - K_{t}) \\ S_{0,t} &= \frac{e^{\beta_{0} + \beta_{1} N_{t} (1 - K_{t})}}{1 + e^{\beta_{0} + \beta_{1} N_{t} (1 - K_{t})}} \end{split}$$

- So post-hunting season survival is modeled as a function of post-season density
 - Expectation that $\beta_1 < 0$

Compensation by Heterogeneity

- Estimation and modeling are much easier when heterogeneity is associated with an identifiable characteristic such as age
- · What about individual frailty?
 - Vital rate variation among individuals not associated with any identifiable characteristic (can't tell quality of bird in hand)

Harvest and Heterogeneity

- Heterogeneity/variation that is readily observed (age, sex, location, etc.) can be:
 - Easily dealt with in inference and modeling
 - Exploited to maximize harvest (focus harvest on individuals of low reproductive value)
- Heterogeneity in vital rates that is not readily observed can:
 - Make inference more difficult (requires mixture distributions)
 - Lead to misinterpretations (see exercise)

Managing Exploited Populations

- Management focus is on how exploitation influences vital rates (rates of birth, death, movement)
- Historically: focus on manner in which hunting mortality interacts with nonhunting mortality to produce overall mortality
- Additive, independent competing risks provide a theoretical framework for this (Baranov 1918), just as they do for most disease modeling

Managing Exploited Populations

- Anderson-Burnham (1976) brought discussions of hunting effects into the scientific arena by defining additive and compensatory mortality hypotheses
- Mechanisms that could underlie compensation are density-dependence and heterogeneity
- But additive competing risks underlie both mechanisms

Managing Exploited Populations III

- Density-dependence:
 - Additive mortality risks, with nonhunting risks modified by post-hunting season density
- · Heterogeneity:
 - Additive mortality risks, with "compensation" effected by positively correlated vital rates (good and poor with respect to both hunting and nonhunting mortality) and resultant changing group composition

Managing Exploited Populations IV

- Although density-dependence and heterogeneity have been discussed primarily as mechanisms underlying mortality responses, they apply to reproduction and movement as well
- Given fair knowledge of population responses to harvest, management can be based on models such as those discussed in this class

Managing Exploited Populations V

- But what do we do in the more typical case of process uncertainty (i.e., about how the population responds to harvest)?
- Adaptive management can use multiple process models and is a defensible approach leading to:
 - State-dependent management based on current state of knowledge (estimated system and information state)
 - Learning (changes in information state)

